职 称:副研究员
导师 资格:硕导
所属 部门:采油所
学科 专业:油气田开发工程
研究 方向:油气田增产理论
联系 方式:13880152374
联系 地址:610500 四川省成都市新都区新都大道85号红宝石官方网站hbs123
杨小江,男,1988年生,博士,讲师,主要从事油气田增产改造工作液体系的研发,包括传统聚合物压裂液体系、高性能清洁压裂液体系、加重压裂液体系、功能性酸化液体系等,致力于将最新理论、方法和技术应用于油气田增产改造工作液新材料的研发当中。近年来主要围绕油气田增产改造工作液体系功能性添加剂的研究,在稠化剂产品及其配套添加剂方面具有较深刻的认识。2016年8月赴南非开普敦大学交流访问,2017年获国家留学基金委资助,赴加拿大卡尔加里大学公派留学一年。发表学术论文67余篇,其中SCI收录62篇,担任《FUEL》《Energy & Fuel》《Journal of Natural Gas Science and Engineering》《Journal of Dispersion Science and Technology》《Journal of Molecular Liquids》《Energy Sources,Part A:Recovery,Utilization,and Environmental Effects》《Petroleum》《Petroleum Science》《ACS Omega》等期刊的审稿专家。
●2007.09-2011.06 西安石油大学,信息与计算科学,学士
●2011.09-2014.06 西安石油大学,油气田开发工程,硕士
●2016.08-2016.09 南非开普敦大学,访问
●2015.09-2018.06 红宝石官方网站hbs123,油气田开发工程,博士
●2017.09-2018.09 加拿大University of Calgary,化学与石油工程系,博士联合培养
●2018.09-至今 红宝石官方网站hbs123石油与天然气工程学院,任教
●国家自然科学基金青年项目,52104035,复杂介质中pH刺激响应型蠕虫状胶束体系构建及其机理研究,2022.01-2012.12,主持
●中国博士后科学基金面上项目一等资助,216447,基于相分离的可回收清洁压裂液稠化剂及其机理研究,2019.06-2021.06,主持
●四川省区域创新合作项目,2020YFQ0031,陆相低渗透油藏携砂挤液储层改造技术,2020.01-2022.12,主持
●中石化东北油气分公司,34500000-18-ZC0607-0002,松南火山岩气藏水平井清洁转向酸液体系研发,2018.11-2019.08,主持
●中石油渤海钻探工程公司井下作业分公司,BHZT-JXZYGS-2020-JS-4,吉兰泰油田吉华2断块砂砾岩油藏储层保护机增产措施技术研究,2020.03-2021.03,主持
●中国石油化工股份有限公司西北油田分公司,3400007-19-ZC0607-0044缝洞型油藏选择性堵水技术优化及应用-缝洞型油藏低效堵水原因分析及配套堵剂测试评价,2019.07-2020.07,主持
●中国石油集团渤海钻探工程有限公司井下作业分公司,2021510102002290,多元有机酸酸液体系合作技术开发,2021.10-2022.10,主持
(1)发表学术论文(第一/通讯作者)
●Yang X J,Mao J C,Zhang H,et al. Copper-catalyzed aerobic oxidation reaction of benzyl alcohol in water under base-free condition[J]. Chinese Journal of Organic Chemistry,2018,38(10):2780-2783.
●杨小江,毛金成,张恒,等.无碱条件下铜催化的苄醇在水中的氧化反应(英文)[J].有机化学,2018(10):2780-2788.
●Yang X J,Mao J C,Zhang Z Y,et al. Rheology of quaternary ammonium gemini surfactant solutions:effects of surfactant concentration and counterions[J]. Journal of Surfactants and Detergents,2018,21(4):467-474.
●Yang X J,Mao J C,Zhang H,et al. Reutilization of thickener from fracturing flowback fluid based on Gemini cationic surfactant[J]. Fuel,2019,Vol.235:670-676.
●Yang X J,Mao J C,Chen Z X,et al. Clean fracturing fluids for tight reservoirs:opportunities with viscoelastic surfactant[J]. Energy Sources Part A-Recovery Utilization and Environmental Effects,2019,41(12):1446-1459.
●Yang X J,Mao J C,Zhang W L,et al. Tertiary cross-linked and weighted fracturing fluid enables fracture stimulations in ultra high pressure and temperature reservoir[J]. Fuel,2020,Vol.268:117222.
●Yang X J,Mao J H,Mao J C,et al. The role of KCl in cationic Gemini viscoelastic surfactant based clean fracturing fluids[J]. Colloids Surf. A Physicochem. Eng. Asp.,2020,606:125510.
●Zhang Q,Mao J C,Yang X J,et al. Synthesis of a hydrophobic association polymer with an inner salt structure for fracture fluid with ultra-high-salinity water[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects,2022,636:128062.
●Mao J C,Yang X J,Chen Y N,et al. Viscosity reduction mechanism in high temperature of a Gemini viscoelastic surfactant (VES) fracturing fluid and effect of counter-ion salt (KCl) on its heat resistance[J]. Journal of Petroleum Science and Engineering,2018,164:189-195.
●毛金成,杨小江,宋志峰,等.耐高温清洁压裂液体系HT-160的研制及性能评价[J].石油钻探技术,2017(6):105-109.
●Mao J C,Yang X J,Wang D L,et al. A novel gemini viscoelastic surfactant (VES) for fracturing fluids with good temperature stability[J]. RSC Advances,2016,6(91):88426-88432.
●Mao J C,Yang X J,Wang D L,et al. Pd-catalyzed oxidative olefination of arenes with olefins via C-H activation:Retention of the leaving group[J]. Russian Journal of Applied Chemistry,2015,88(12):2050-2055.
●Mao J C,Yang X J,Wang D L,et al. Optimization of effective sulfur solvents for sour gas reservoir[J]. Journal of Natural Gas Science and Engineering,2016,36:463-471.
●Mao J C,Yang X J,Yan H,et al. Effective Synthesis of Benzyl 3-Phenylpropiolates Via Copper(I)-Catalyzed Esterification of Alkynoic Acids with Benzyl Halides Under Ligand-Free Conditions[J]. Catalysis Letters,2016,146(5):886-892.
●Mao J C,Wang D L,Yang X J,et al. Application and optimization:Non-aqueous fracturing fluid from phosphate ester synthesized with single alcohol[J]. Journal of Petroleum Science and Engineering,2016,147:356-360.
●Mao J C,Liu J W,Wang H B,Yang X J,et al. Novel terpolymers as viscosity reducing agent for Tahe super heavy oil[J]. RSC Advances,2017,7(31):19257-19261.
●Zhang W L,Mao J C,Yang X J,et al. Study of a novel gemini viscoelastic surfactant with high performance in clean fracturing fluid application[J]. Polymers,2018,10(11):1215.
●Mao J C,Zhang C,Yang X J,et al. Investigation on problems of wastewater from hydraulic fracturing and their solutions[J]. Water Air Soil Pollut.,2018,229(8):246.
●Mao J C,Wang D L,Yang X J,et al. Experimental study on high temperature resistance aluminum-crosslinked non-aqueous fracturing fluids[J]. Journal of Molecular Liquids,2018,258:202-210.
●Mao J C,Kang Z,Yang X J,et al. Synthesis and performance evaluation of a nanocomposite pour-point depressant and viscosity reducer for high-pour-point heavy oil[J]. Energy & Fuels,2020,34(7):7965-7973.
●Zhang W L,Mao J C,Yang X J,et al. Effect of propylene glycol substituted group on salt tolerance of a cationic viscoelastic surfactant and its application for brine-based clean fracturing fluid[J]. Colloids Surf. A Physicochem. Eng. Asp.,2020,584:124043.
●Mao J C,Wang C,Yang X J,et al. Self-diverting acid system with retarding function for heterogeneous carbonate reservoirs stimulation[J]. J. Surfactants Deterg.,2020,23(4):831-839.
●Zhang W L,Mao J C,Yang X J,et al. Development of a sulfonic gemini zwitterionic viscoelastic surfactant with high salt tolerance for seawater-based clean fracturing fluid[J]. Chemical Engineering Science,2019,207:688-701.
●Zhang W L,Mao J C,Yang X J,et al. Development of a Stimuli-Responsive Gemini Zwitterionic Viscoelastic Surfactant for Self-Diverting Acid[J]. J. Surfactants Deterg.,2019,22(3):535-547.
●Mao J C,Wang D L,Yang X J,et al. Exploration of low adsorption surfactants for reservoir stimulation[J]. Journal of The Taiwan Institute of Chemical Engineers,2019,95:424-431.
●Zhang Z Y,Mao J C,Yang X J,et al. Advances in waterless fracturing technologies for unconventional reservoirs[J]. Energy Sources Part A-Recovery Utilization and Environmental Effects,2019,41(2):237-251.
●毛金成,韩涤非,杨小江,等.特种聚酰亚胺作为油田管材涂层的性能评价[J].科学技术与工程,2019(28):129-135.
●Huang Z G,Mao J C,Cun M,Yang X J,et al. Polyhydroxy cationic viscoelastic surfactant for clean fracturing fluids:Study on the salt tolerance and the effect of salt on the high temperature stability of wormlike micelles[J]. Journal of Molecular Liquids,2022,366:120354.
●Lin C,Mao J H,Mao J C,Yang X J,et al. Experimental Study on the Strength and Failure Mechanism of Hollow Hot Dry Rocks Under Brazilian Splitting Tests[J]. Arabian Journal for Science and Engineering,2022(9):11125-11134.
●Mao J C,Xue J X,Zhang H,Yang X J,et al. Investigation of a hydrophobically associating polymer’s temperature and salt resistance for fracturing fluid thickener[J]. Colloid and Polymer Science,2022(5):1-2.
●Mao J C,Huang Z G,Cun M,Yang X J,et al. Effect of spacer hydroxyl number on the performance of Gemini cationic viscoelastic surfactant for fracturing fluids[J]. Journal Of Molecular Liquids,2022,46:117889.
●Mao J C,Liao Z J,Jiang J X,Yang X J,et al. One practical CaCl2-weighted fracturing fluid for high-temperature and high-pressure reservoir[J]. Petroleum Science and Technology,2022,40:23.
●Zhang W L,Mao J C,Jia Z F,Yang X J,et al. Design of a salt-tolerant Gemini viscoelastic surfactant and the study of construction of wormlike micelle structure in high-salinity aqueous environment[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects,2021,631:127653.
●Xu T,Mao J C,Zhang Y,Yang X J,et al. Experimental study on high-performers quaternary copolymer based on host-guest effect[J]. Polymers,2021,13(17):2972.
●Tian J Z,Mao J C,Zhang W L,Yang X J,et al. Salinity and heat-tolerant VES (Viscoelastic Surfactant) clean fracturing fluids strengthened by a hydrophobic copolymer with extremely low damage[J]. Chemistryselect,2021,6(9):2126-2143.
●Xu T,Mao J C,Zhang Y,Yang X J,et al. Application of gemini viscoelastic surfactant with high salt in brine-based fracturing fluid[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects,2021,611:125838.
●Zhang H,Mao J C,Zhao J Z,Yang X J,et al. The impact of dissymmetry on the aggregation properties of heterogemini surfactants[J]. Colloids Surf. A Physicochem. Eng. Asp.,2020,585:124165.
●Tian J Z,Mao J C,Zhang W L,Yang X J,et al. Application of a zwitterionic hydrophobic associating polymer with high salt and heat tolerance in brine-based fracturing fluid[J] .POLYMERS,2019,11(12):2005.
●Mao J C,Tian J Z,Zhang W L,Yang X J,et al. Effects of a counter-ion salt (potassium chloride) on gemini cationic surfactants with different spacer lengths[J]. Colloids And Surfaces A-Physicochemical And Engineering Aspects,2019,578:123619.
●Zhang Z Y,Mao J C,Yang B,Yang X J,et al. Experimental evaluation of a novel modification of anionic guar gum with maleic anhydride for fracturing fluid[J]. Rheologica Acta,2019,58(3-4):173-181.
●Zhang Y,Mao J C,Zhao J Z,Yang X J,et al. Preparation of a hydrophobic-associating polymer with ultra-high salt resistance using synergistic effect[J]. Polymers,2019,11(4):626.
●Zhang Y,Mao J C,Zhao J Z,Yang X J,et al. Preparation of a novel ultra-high temperature low-damage fracturing fluid system using dynamic crosslinking strategy[J]. Chemical Engineering Journal,2018,354:913-921.
●Zhao J Z,Fan J M,Mao J C,Yang X J,et al. High performance clean fracturing fluid using a new tri-cationic surfactant[J]. POLYMERS,2018,10(5):535.
●Mao J C,Li R,He Y,Yang X J,et al. Palladium-catalyzed synthesis of diarylbenzenes from coupling reactions between equal amount of diiodoarenes and arylboronic acids[J]. Russian Journal of Applied Chemistry,2016,89(4):663-669.
(2)授权专利
●杨小江,毛金成,张阳,等.一种高密度水基清洁(VES)压裂液及其稠化剂的制备:201910054916.8[P]. 2021-01-12.
●杨小江,毛金成,张恒.可回收清洁压裂液稠化剂及其制备方法、回收方法以及耐高温清洁压裂液:201810942253.9[P]. 2020-07-28.
●Yang X J,Mao J C,Zhang H. Recyclable Clean Fracturing Fluid Thickener,Preparation Method and Recovery Method Thereof,and High-Temperature Resistant Clean Fracturing Fluid:US10894761 [P]. 2021-01-19.
●Yang X J,Han D F,Mao J C,et al. Emulsifer With High Temperature Resistance,Low Viscosity and Low Corrosiveness,and Emulsified Acid System Comprising Same:US 11377589[P]. 2022-07-05.
●Mao J C,Zhang Y,Zhao J Z,Yang X J,et al. Self-Healing,Low-Damage and Ultra-High Temperature-Resistant Fracturing Fluid:US10633576[P]. 2020-04-28.
●Mao J C,Fan J M,Zhao J Z,Yang X J. Tri-cationic viscoelastic surfactant,preparation method and application thereof and clean fracturing fluid:US10870790[P]. 2020-12-22.
●毛金成,杨小江,张恒,等.一种双子两性黏弹性表面活性剂及其制备方法和以其为稠化剂的清洁压裂液:201610578298.3[P]. 2018-08-24.
●毛金成,杨小江,李勇明,等.一种新型聚醚胺类的高效硫溶剂及其制备方法:201510557711.3[P]. 2018-04-20.
●毛金成,杨小江,李勇明,等.一种常温硫溶剂及其制备方法:201510556480.4[P] 2018-06-29.
●毛金成,杨小江,李勇明,等.一种溶硫剂及其制备方法:201510557608.9[P]. 2018-07-06.
(3)科研获奖
●中国产学研合作促进会产学研合作创新成果优秀奖,陆相致密砂岩强非均质油气藏长效酸化改造技术及重大应用,4/10,2019
●中国石油和化工自动化应用协会科技进步二等奖,低成本高性能压裂酸化工作液关键技术及应用,2/8,2021
●中国石油和化工学工业联合会科技进步三等奖,超高温储层增产改造化学转向技术及应用,3/5,2022
主要从事油气藏增产改造中工作液体系包括各种类型的压裂液体系、酸化(压)液体系及储层重复改造中暂堵剂材料及配套工艺的研究。
●油气藏增产改造压裂液体系:压裂液是水力压裂过程中的工作液,起着传递压力、形成和延伸裂缝、携带支撑剂的作用,它的性能在很大程度上决定了压裂施工的成败,随着油气储层变得越来越复杂、非常规油气藏的开发,对压裂液的要求也越来越高,例如耐(超)高温压裂液、清洁压裂液、加重压裂液、耐矿化度压裂液、低摩阻滑溜水等。
●油气藏增产改造酸化(压)液体系:酸化(压)作为储层解堵、增产的重要手段,常规的酸液体系已无法满足日益复杂的储层条件,需要开展耐(超)高温的稠化酸、转向酸、缓速酸等一系列功能性酸液体系的研发。
●储层重复改造中的暂堵剂材料及配套工艺:对于天然裂缝发育或者经过前期增产改造的储层,为了进一步提高增产改造效果,沟通新的油气储集体,需要对原有裂缝进行暂时性封堵,迫使后续改造裂缝转向,需要对暂堵剂材料和暂堵工艺进行研究,包括暂堵剂类型、尺寸、性能及组合参数等。
本团队共有4名固定老师,包括毛金成教授,林冲博士,张阳博士,涵盖油田化学、有机合成、聚合物合成、分子模拟、岩石力学、增产改造工艺等研究方向。