Abstract
报告题目:Rate-Invariant Analysis of Trajectories on Manifolds
报告人:苏敬勇(美国德州理工大学,助理教授/博导)
时间:2018年5月21日 16:30-17:30
地点:明理楼A514
Abstract: In this research we proposed a comprehensive framework for registration and analysis of manifold-valued processes. Functional data analysis in Euclidean spaces has been explored extensively in literature. But we study a dierent problem in the sense that functions to be studied take values on nonlinear manifolds, rather than in vector spaces. Manifold-valued data appear frequently in shape and image analysis, computer vision, biomechanics and many others. The non-linearity of the manifolds requires development of new methodologies suitable for analysis of manifold-valued data. We propose a comprehensive framework for joint registration and analysis of multiple manifold-valued processes. The goals are to take temporal variability into account, derive a rate-invariant metric and generate statistical summaries (sample mean, covariance etc.), which can be further used for registering and modeling multiple trajectories.
报告人简介:苏敬勇,美国德州理工大学助理教授,博士生导师。2006年毕业于哈尔滨工业大学电子工程与自动化学院获得学士学位;2008年毕业于该学院获得硕士学位。2013年毕业于佛罗里达州立大学统计系获得博士学位。2013年至今,在德州理工大学数学与统计系任助理教授。苏敬勇博士的研究方向为:对于来源于计算机视觉、医学成像以及生物测定学等领域具有复杂结构的数据,开发算法与统计工具,并建立模型来对其进行分析。所研发的模型主要用于登记和随后分析功能性和形状数据,同时也用于基于黎曼几何原理的流形上的轨迹。目前在研一项受美国自然科学基金资助的项目(NSF DMS-1513420 )。
热烈欢迎全校师生参加学术交流!
举办单位:理学院 科研处