部分代表性论著: [1] Guo J*, Wang Z, Li H*, Yang Y, Huang C-G, Yazdi M, Kang H-S. A Hybrid Prognosis Scheme for Rolling Bearings Based on a Novel Health Indicator and Nonlinear Wiener Process. Reliability Engineering & System Safety. 2024; 245: 110014.(中科院1区TOP期刊,与葡萄牙里斯本大学玛丽居里学者李贺博士合作完成,西苏格兰大学、马来西亚理工大学为参与单位) [2] Guo J*, Yang Y, Li H*, Dai L, Huang B. A parallel deep neural network for intelligent fault diagnosis of drilling pumps. Engineering Applications of Artificial Intelligence. 2024; 133: 108071.(中科院1区TOP期刊,与葡萄牙里斯本大学玛丽居里学者李贺博士合作完成) [3] Guo J*, Wan JL, Yang Y, Dai L, Tang A, Huang B, Zhang F, Li H*. A deep feature learning method for remaining useful life prediction of drilling pumps. Energy. 2023; 282: 128442. (中科院1区TOP期刊,与葡萄牙里斯本大学玛丽居里学者李贺博士合作完成) [4] Dai L, Guo J*, Wan JL, Wang J, Zan X. A reliability evaluation model of rolling bearings based on WKN-BiGRU and Wiener process. Reliability Engineering & System Safety. 2022; 225:108646.(中科院1区TOP期刊,第一作者为所指导硕士研究生) [5] Guo J, Zan X, Wang L, Lei L, Ou C, Bai S*. A random forest regression with Bayesian optimization-based method for fatigue strength prediction of ferrous alloys. Engineering Fracture Mechanics. 2023; 293: 109714. (中科院1区TOP期刊) [6] Wang Z, Guo J*, Wang J, Yang Y, Dai L, Huang CG, Wan JL. A deep learning based health indicator construction and fault prognosis with uncertainty quantification for rolling bearings. Measurement Science and Technology. 2023, 34, 105015. (中科院3区期刊,与新加坡国立大学合作完成,第一作者为所指导硕士研究生) [7] Guo J*, Wang J, Wang Z, Gong Y, Qi J, Wang G, Tang C. A CNN‐BiLSTM‐Bootstrap integrated method for remaining useful life prediction of rolling bearings. Quality and Reliability Engineering International. 2023, 39(5): 1796-1813 (中科院3区期刊) [8] Wang J, Guo J*, Wang L, Yang Y, Wang Z, Wang R. A hybrid intelligent rolling bearing fault diagnosis method combining WKN-BiLSTM and attention mechanism. Measurement Science and Technology. 2023; 34(8): 085106. (中科院3区期刊,第一作者为所指导硕士研究生) [9] Guo J, Li YF, Peng W, Huang H Z*. Bayesian information fusion method for reliability analysis with failure‐time data and degradation data. Quality and Reliability Engineering International. 2022 Jun;38(4):1944-56.(中科院3区期刊) [10] Li H, Guo J*, Yazdi M, Nedjati A, Adesina KA. Supportive emergency decision-making model towards sustainable development with fuzzy expert system. Neural Computing and Applications. 2021; 33(22): 15619-15637. (中科院3区期刊,与中山大学合作完成) [11] Guo J, Li YF*, Zheng B, Huang HZ*. Bayesian degradation assessment of CNC machine tools considering unit non-homogeneity. Journal of Mechanical Science and Technology. 2018; 32: 2479-2485.(中科院4区期刊) [12] Guo J, Fu GZ, Huang HZ*, Liu Y, Li YF. Characterizing wafer stage transmission errors via binary decision diagram and dynamic fault tree. Journal of Mechanical Science and Technology. 2018; 32: 5111-5119.(中科院4区期刊) [13] Guo J, Huang HZ*, Peng W, Zhou J. Bayesian information fusion for degradation analysis of deteriorating products with individual heterogeneity. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability. 2019; 233(4): 615-622.(中科院4区期刊) |