报告题目:Photon-phonon co-driven catalysis for methane transformation
报告人:唐军旺 欧洲科学院院士、博导、教授
报告时间:8月7日(星期三) 15:00-16:30
报告地点:明理楼B306报告厅
报告人简介:
唐军旺院士任清华大学化工系工业催化中心创建主任,清华首位碳中和讲席教授。唐教授是欧洲科学院院士(the Academy of Europe),英国科学院-利弗休姆资深研究员(Royal Society-Leverhulme Trust Senior Research Fellow), 比利时欧洲科学院院士 (Fellow of European Academy of Sciences),英国皇家化学会会士(Fellow of RSC),英国材料、矿物和采矿协会会士(Fellow of IMMM)和中国化学会荣誉会士。曾任伦敦大学学院(UCL,QS世界大学排名过去15以来一直位列世界前10名)大学材料中心主任多年。其在低碳能源催化材料的开发,光和热协同催化活化小分子(包括水分解制氢,合成氨,二氧化碳转化,甲烷转化等),以及微波催化方面(塑料的催化循环利用)具有很深厚的理论基础和研究经验。已在国际杂志Nature Catalysis, Nature Energy, Nature Materials, Nature Sustainability, Nature Reviews Materials, Chemical Reviews, Chem. Soc. Rev.等能源和化学领域期刊共发表了>250篇文章.同时是5个国际杂志的主编/编辑或者副主编,包括Applied Catalysis B(影响因子24), Journal of Advanced Chemical Engineering, Chin J. Catal.(催化学报)和Carbon Future等。
报告内容摘要:
As underlined in the COP26, methane as a greenhouse gas is nearly 25 time more potent than CO2while its reserve is much more than the sum of coal, oil and natural gas. Thus methane conversion not only involves the environmental issue but more importantly is regarded as the most promising pathway for high-value chemical synthesis. However CH4activation is energy intensive and kinetically very sluggish so that methane activation is regarded as the “holy grail” in the catalytically chemical process [1]. Photocatalysis provides a cost-efficient potential to activation of such small molecule under very mild conditions, while to achieve the potential is a huge challenge [2].
Stimulated by our research outcomes on the charge dynamics, which reveal that the low reaction efficiency is due to fast charge recombination and large bandgap of a semiconductor [3], we developed novel material strategies for photocatalytic methane conversion. Highly dispersed atomic level iron on TiO2shows an excellent activity for methane conversion, resulting into ~97% selectivity towards alcohols operated under ambient conditions by a one-step chemicalprocess [4].The dominating function of the iron species has also been investigated in detail. C1 oxygenates can also be produced with nearly 100% selectivity by oxide photocatalyts due to the synergy between Au and Cu cocatalysts loaded on ZnO [5]. Furthermore, we coupled photons with phonons to co-drive catalytic methane conversion to C2 over Au loaded TiO2, achieving the benchmark results in this area [6]. Finally for the first time, we demonstrated the photon-phonon co-driven catalysis for methane to formaldehyde with a nearly 90% selectivity [7].
References:
1) Li, X. Wang, C., Tang, J.Nature Reviews Materials,2022,7, 617–632.
2) Thangamuthu, L., Ruan, Q., Ohemeng, P.S., Luo, L, Jing, D., Godin, R., Tang, J.,Chemical Reviews,2022,122 (13),11778-11829.
3) Tang, J. Durrant J. R., Klug,D. R .,J. Am. Chem. Soc.,2008,130(42) : 13885-13891.
4) Xie, J., Jin, R., Li, A., Bi, Y., Sankar, G., MaD., Tang, J.Nature Catalysis,2018, 1: 889-896.
5) Luo, L., Gong, Z., Xu, Y., Ma, J., Liu, H., Xing, J., Tang, J.,Journal of the American Chemical Society,2022, 144, 2, 740–750.
6) Li, X., Li, C., Xu, Y., Liu, Q., Bahri, M., Zhang, L., Browning, N.D., Cowan,A.J., Tang, J.,Nature Energy,2023,8, 1013–1022.
7) Xu, Y. Wang, C., Li, X., Xiong, L.,…Tang, J.,Nature Sustainability,2024,DoI:10.1038/s41893-024-01401-y.
主办单位:新能源与材料学院/光伏新能源现代产业学院
油气藏地质及开发工程全国重点实验室
能量转换与储存先进材料四川省国际科技合作基地
四川省玄武岩纤维复合材料开发及应用工程技术研究中心
四川省页岩气高效开采先进材料制备技术工程研究中心
氢能制取与高效利用重点实验室
成都市科技青年联合会材料能源专委会
科学技术发展研究院